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Motivation

« There exists a scale on which universe can be considered homogeneous.
(~80h~1Mpc)

« However it is not homogeneous and isotropic on smaller scale.

« Cosmological Perturbation : Background + Perturbation
* Non-linear regime will emerge.
 Exteremly difficult!

« Cosmological N-body : evolution of background from averaged density
* In general, evolution of mean # mean of evolution

 The validity of these must be checked against a more precise solution.
« Numerical Relativity : Full GR simulation is possible
« Upcoming cosmological survey : Euclid, SKA and LSST
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3+71 Formalism



Geometrodynamics Point of View

* Time evolution of 3-dimensional space

» Questions
* |s there global time function?
* Initial value problem is possible?

« How to decompose Einstein equation?
 Evolution equation : time derivative
« Constraint equation : spatial derivative

« Gauge freedoms of time function?



Globally Hyperbolic Spacetime

* There exist global time function t
 ¥; : constant t hypersurfaces
« Spacetime is foliated by Z;.
e ¥; Is spacelike Cauchy surface.




Initial Value Problem (vacuum case)

 Given vacuum Iinitial data, we can always uniquely develop a
spacetime satisfies the vacuum Einstein equation. [Y. Choquet-
Bruhat and R. Geroch (1969)]

* Initial value problem is also possible in perfect fluid case. [S.
Hawking and G. Ellis (1973)]
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Unit Normal Vector and 3+1 Decomposition

* (dt), : gradient of t

_ab
e n = 9 W@ __ - fyture-directed unit normal to Yy
J-od@ncn
* N = - . Lapse function na
J-od@ncng
* Projection to X; ve
A
« v+ n%(n,v?) = [6%, + n%ny]v? na(—n,v?) _
* ¥y, =6% +nn,

» 3+1 Decomposition of vector ya pb
b

+ v% = (—vPny)n% +y®, vP
/\/Zt




Fundamental Forms of X,

e 1st fundamental form : induced metric
*Yab = gcdycaydb
« Metric for spatial vector.

« 2nd fundamental form : extrinsic curvature

1
* Rgp = ELnyab — VCaVcnb
* “Time derivative” of induced metric.
« Measure of how to embed X; in spacetime.

e Associated Derivative
* DeYap =0




Conformal Decomposition

*Yab = ‘P4)7ab
*DeVap =0

1
* Kop = gKyab + Ay

1 ~
— gKyab + lP4Aab




Gauge In Geometrodynamics

e (0/0t)* = Nn% + B¢
« B4 : shift
e spatial gauge
* It determines propagation direction
of spatial coordinate
* N : lapse
» time slicing

* It determines shape of next time
slice.




It is different to Perturbation Gauge

xi = const orbit of ¥, orbit of ¢, : point indentification

Yitst M, : perturbed spacetime

M, : background spacetime

d/dt : Spatial Gauge V . Perturbation Gauge
L(a/at)yab _ Lnyab — Lﬁyab LW.gab _ LVgab = Lg‘gab
= DyBp + DpBq = Vaép + Vpéq

[Gauge in geometrodynamics] [Gauge in perturbation of spacetime]



Example: FLRW Metric

e ds? = —dt? + a?(t)(dy? + fZ (x)dQ?)
* f+a(x) =siny, fo(x) = x, f-1(x) = sinhy

N=1 g%=0

Y2 =g :scale factor

ab — aqyab
» K = 3= : Hubble parameter
* Agp =0

* Ropea = kFacVpa — VaaVpe) Rap = 2k



3+1 Decomposition of Stress-Energy

* Tap = Engny + panp + ngPp + Sap

« V°T,, = 0 : Conservation
* Lnp = —Dgp® — KE — KabSab — 2p“aq
* Lypg = _DbSab - Sabab — Kpqa —Ea,



Example: Perfect Fluid

* Tap = pugup + (gap + Ugqup)P

cu =T(n*+U% : 3+1 decomposition of u?

* Lyp = —Dg[(p + P)U*] = N (p + P)(K + Kq, U*U®) -
2(p+ P)U%,

. £,U, = -UbD,U, + UPa,U, — a, + K, , UPUU, — pﬁ [D,P +
U,N1L, P]




3+1 Decomposition of Einstein Equation

* G,p = 8Ty,
* Evolution Equations

+ LylnW=-K——Lynf

* Ln7ij = 24 +%77ijLn In f

+ LK =W ~*[NID,D'N + 2D;InW D! InN| — A;;AY — ~K? — 4 (E + S)

o Lodyj =S AyLyInf + KAy + 278 Aycdjy + 8 (WS — 257y ) — W™+ |-N"D DN +
4D In¥ DjyInN + (N"DD*N — 4D, InW D¥InN);; + Ry — S Ryy; — 2D, D;Inw +
4D;nW D; In ¥ + (D, D* In ¥ — 2D, In ¥ D In W) |

« Constraint equations

+ DiD'W — - RW + - A;AVWS — —K?WS = —2mEWS  [Hamiltonian Constraint]

 D;j(WeAY) — §W6l~)i1( = 8 P10p! [Momentum Constraint]



Example: FLRW Model

* Evolution Equation

a
* Az =0
. 3§=—4n(p+3p)
o« yd = nt

 Constraint Equation

.(2)2_81 _k
a _3'0 a?



Full GR Evolution of
Cosmological Inhomogeneities



First Full GR Evolution

week ending
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While the use of numerical general relativity for modeling astrophysical phenomena and compact
objects is commonplace, the application to cosmological scenarios is only just beginning. Here, we
examine the expansion of a spacetime using the Baumgarte-Shapiro-Shibata-Nakamura formalism of
numerical relativity in synchronous gauge. This work represents the first numerical cosmological study that
is fully relativistic, nonlinear, and without symmetry. The universe that emerges exhibits an average
Friedmann-Lemaitre-Robertson-Walker (FLRW) behavior; however, this universe also exhibits locally
inhomogeneous expansion beyond that expected in linear perturbation theory around a FLRW background.
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FLRW model to compare

e Dust filled flat universe
e Dust: P=0 -
eFlat: k=0




Evolution Equation

» Gauge Choice: N = 1(geodesic slicing), ¢ = 0 (normal gauge)
* Einstein Equation
0 1 0 ~ e
’—IDLPZEK EVUZZAU
aiK = —24,;AY - ZK? — 4mp
° — — Ak . D l D
= Ay = KAy + 24344 + 9~ (R — S Ry
* Energy-Stress Conservation
* Uy=0and =p = —pK if u® = n® initially



Initial Data on X%,

L
Matter power

« Conformal Metric
* ¥ij = 8;;: conformally flat assumption

e Extrinsic Curvature
e K : constant

R

P(k) [(h-"Mpc)?]

—
TTIT

o AU = ()
0.1
. . k [1/h-! Mpe]
Matter Eensk';[l\}" Power Spectrum Galaxy power from SDSS, PRD 69 103501
° Pk — - -

3 142(k/k.)*

 Conformal Factor

e DID;¥Y = —2m7Po (p — L1(2) [Hamiltonian Constraint]
241



Behavior of Average

eh=InY = élna . e-folding / 2

- ¢ : spatial average of ¢ (proxy for time)
* 1 — K?/24mp : deviation of averaged behaV|or from FLRW
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Growth of Inhomogeneity

* /K : variations of extrinsic curvature
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Distribution of Deviation

e Linear perturbation in synchronous gauge
+ 8,8p = p6K +K8p  08,6K = K&K + 4ndp

* 6K/K — (6K/K)10. Vs 8p/p
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Summary

« Understanding non-linear effects of GR on cosmology are
getting more important.

* Numerical relativity has performed full GR simulation of
spacetime successfully.

 Recently, numerical relativity has been applied to evolution of
cosmological inhomogeneities.

* [t indicates that the effect of non-linear inhomogeneities may
be significant.



Constraint Violation

* H = D'DW — -WR +-WSA; AU — —WSK? + 2m¥Sp
+ Mt = D;(WOAY) — ZWODIK — 8y 10p!



